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Abstract 
 

This paper presents an efficient distributed genetic 
algorithm for classification rules extraction in data 
mining, which is based on a new method of dynamic 
data distribution applied to parallelism using networks 
of computers in order to mine large datasets. The 
presented algorithm shows many advantages when 
compared with other distributed algorithms proposed 
in the specific literature. In this way, some results are 
presented showing significant learning rate speed-up 
without compromising other features.  

 

1. Introduction 
 

Mining huge datasets for learning classification 

models with high prediction accuracy can be a very 

difficult task. The evaluation of data over large size 

datasets makes data mining algorithms inefficacy and 

inefficient. The effect produced by the size of the data 

in the algorithms is called scaling problem. 

There are three main approaches for this problem: 

• Use as much as possible apriori knowledge to 

search in subspaces small enough to be explored. 

• Perform data reduction. 

• Algorithm scalability. 

In this way, there have been several efforts to make 

use of models based on distributed evolutionary 

algorithms in data mining for classification in large size 

datasets in order to emphasize on aspects of scalability 

and efficiency. REGAL [1] and NOW G-net [2] 

increase the computational resources via the use of data 

distribution. Nowadays, the use of collection of 

computers to achieve greater amount of computational 

resources become more popular because they are much 

more cost-effective than single computers of 

comparable speed.  

In this paper we present an Efficient Distributed 

Genetic Algorithm for classification Rules extraction 

(EDGAR) with dynamic data partitioning that shows 

advantages in scalability for exploring high complexity 

search spaces with comparable classification quality.  

The outline of the contribution is as follows: In 

Section 2 we review the distributed evolutionary 

models in rule induction. Section 3 is devoted to 

analyse the proposed algorithm. The experimental 

study developed is shown on Section 4 and finally, we 

reach conclusions in Section 5. 

 

2. Preliminaries: genetic learning 
  

Genetic Algorithms (GA) are search algorithms 

based on natural genetics that provide robust search 

capabilities in complex spaces, and thereby offer a 

valid approach to problems requiring efficient and 

effective search processes [8].  

They have achieved reputation of robustness in rule 

induction, in commons problems associated to real 

world mining (noise, outliers, incomplete data, etc…). 

Initially GA were not designed as machine learning 

algorithms but can be easily dedicated to this task [10]. 

Typically the search space is seen as the entire possible 

hypothesis rule base that covers the data. The goodness 

is usually related to a coverage function over a number 

of learning examples.  

Regarding the representation of the solutions, the 

proposals in the specialized literature follow two 

approaches in order to encode rules within a population 

of individuals: 

• The ‘‘Chromosome = Set of rules’’, also called the 

Pittsburgh approach, in which each individual 

represents a rule set [18]. In this case, a 

chromosome evolves a complete RB and they 

compete among them along the evolutionary 

process. GABIL [9] and GA-MINER [7] are 

proposals that follow this approach. 

• The ‘‘Chromosome = Rule’’ approach, in which 

each individual codifies a single rule, and the whole 

rule set is provided by combining several 

individuals in a population (rule cooperation) or via 

different evolutionary runs (rule competition). 

In turn, within the ‘‘Chromosome = Rule’’ 

approach, there are three generic proposals: 
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• The Michigan approach, in which each individual 

encodes a single rule. These kinds of systems are 

usually called learning classifier systems [17]. They 

are rule-based, message-passing systems that 

employ reinforcement learning and a GA to learn 

rules that guide their performance in a given 

environment. The GA is used for detecting new 

rules that replace the bad ones via the competition 

between the chromosomes in the evolutionary 

process.  

• The IRL (Iterative Rule Learning) approach, in 

which each chromosome represents a rule. 

Chromosomes compete in every GA run, choosing 

the best rule per run. The global solution is formed 

by the best rules obtained when the algorithm is run 

multiple times. SIA [4] is a proposal that follows 

this approach. 

• The GCCL (genetic cooperative-competitive 

learning) approach, in which the complete 

population or a subset of it encodes the RB. In this 

model the chromosomes compete and cooperate 

simultaneously. COGIN [19], REGAL [1] and 

NOW G-Net [2] are examples with this kind of 

representation. 

In relation with scalability, one of the approaches to 

scale supervised data mining algorithms is to use data 

distribution in a number of processors [3]. Then each 

processor performs genetic learning using a single 

training data subset and a single subpopulation. It 

seems that each sub-population is likely to over fit the 

corresponding training data subset. Some approaches 

have been applied to avoid this problem: 

• Dynamically redistribute training data and rules. A 

master process controls the data assigned trough the 

learning process [1][2] to each client processor.  

• The data subsets assigned to each client processors 

changes after a pre-specified number of generations 

without removing the existing population. The 

individuals will try to cover then the newly arrived 

training data [6].  

The proposal presented in this work follows GCCL 

approach with a new dynamic data distribution 

technique in order to get scalability without the 

previously mentioned over fitting, and a central elite 

pool to integrate the partial solutions.  

 

3. EDGAR  
 

This section describes the characteristics of 

EDGAR. This algorithm uses the inherent parallelism 

of GA for distributing the population and the training 

data in order to improve the scalability on large 

datasets. 

This section details the distributed model and the 

components of the genetic algorithm: representation, 

genetic operators, genetic search and data reduction. 

Last part of this section is devoted to the greedy 

algorithm used for determine the best set of rules that 

will make up the classifier from the redundant 

population of rules generated by a GCCL algorithm.  

 

3.1. Model 
 

Using the intrinsic parallelism of GA, various 

distributed GA have been proposed to reduce the 

computational effort needed in solving complex 

optimization problems. Instead of evolving the entire 

population in a single processor, parallel GA applies 

the concept of multiple intercommunicating 

subpopulations [10] in analogy with the natural 

evolution of spatially distributed populations namely 

island model.  

In order to improve scalability, we have assigned 

different partitions of the learning data to each node. 

Each node will tend to cover the local data proposing a 

concept description. The communication of the best 

individuals between subpopulations will enforce those 

individuals that perform properly in more than one 

node.  

 

  
Figure 1. Distributed model 

 
To avoid the disruption due to data partitioning we 

propose a novel technique called data learning flow 

(DLF). DLF it is based in the idea that a training 

example not properly covered may be better covered in 

another data partition. DLF copies the training 

examples covered by low fitness rules to the 

neighborhood. DLF allows recreating the original 

concept represented by those learning examples in one 

of the existing data partitions. 

When the data does not have small disjunts [15] and 

the classes are nearly balanced each node will produce 
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a valid set of rules.  But datasets with small dijunts will 

be even more difficult to learn after data partitioning.  

Another difference with the island model is the 

extraction of the rule set that will form the final 

solution. In an island model all the nodes will converge 

to a similar population, but with data partitioning each 

node will generate a different set of rules reflecting the 

assigned data and may not perform properly against the 

entire dataset.  

This proposal uses an elite pool in a central node 

with the full dataset for this purpose (see figure 1). The 

nodes send their best rules to the elite pool. When the 

classification ratio does not improve in the elite pool 

for some generations the current set of rules is 

extracted from this pool as the proposed classifier. 

As a summary, the distributed model proposed is 

based on: 

•  Multiple intercommunicating subpopulations. 

•  Distributed data and DLF. 

•  Central elite pool. 

 

3.2. Local genetic algorithm   
 

EDGAR uses a local GA in each node with some 

communications with the neighborhood for individuals 

and poorly covered examples.  

 

 
Figure 2.Local Genetic Algorithm 

 
Each node receives a subset of the training 

examples randomly selected from the initial dataset. 

Each training example only will exist initially in one 

partition. The initial population is created with rules 

covering some of the examples of the initial population 

(seeding). In each cycle some individual are selected 

using the Universal Suffrage (US) operator for 

recombination and mutation. Each offspring will 

replace a randomly selected individual in the current 

population.  

After a number of iterations, some operations are 

performed (see figure 2): 

• The rules that better cover the local data are copied 

to other nodes and the elite pool. 

• Some individuals from other nodes replace 

randomly selected individuals in the current 

population. 

• DLF: The learning examples not covered or 

covered by low fitness rules are copied to other 

nodes. 

• If the best rules are the same for a number of 

iterations, the best individual and their covered 

cases are removed.  

The process finalizes whether all the training data is 

removed or the classification ratio in the central pool 

does not improve after a number of generations.  

 

3.3. Representation 
 

EDGAR uses a fixed length bit string representation 

to code a disjunctive rule. The use of fix length 

chromosomes allows having simpler genetic operators.  

In order to keep the maxima that a local change on the 

genotype implies a proportionate change on the 

phenotype, each different possible value of an attribute 

in a rule is represented as a single bit. Meaning a bit set 

to 1 the presence of the value in the rule and a bit set to 

0 the absence of this value in the rule.  

A rule is composed by characteristics C= c1, c2, ... , 
cj,  each one can take just one value in each instance of 

the data mined  but the rule may have more than one 

value for this characteristic. 

 For example, a rule which covers a dataset with 

three antecedents c1 (v1,v2,v3), c2(v4,v5), c3 (v6,v7,v8) and 

the consequent class(v9,v10) will be represented as seen 

in figure 3. 

 
3.4. Fitness  
 

The fitness function is based on the following 

measurements: 

Generate initial population using seeding 

While (Stop Criteria) 

    For a number of generations 

        Select g individuals by US 

             For each individual 

               If  % Perform recombination 

                If  % Perform mutation 

      end 

             replace g individual from population 

             Exchange individuals  

             Exchange training examples 

        end 

     end  

     Extract set of rules by greedy algorithm 

     Send set of rules to Central Pool 

     If (not improving) reduce training data 

  end 

if c1 in (v1,v3) and c3 in (v1 ) then  class is v2 
 

c1 c2 c3 Class 

V1 v2 v3 v4 v5 v6 v7 v8 v9 v10 

1 0 1 0 0 1 0 0 0 1 

Figure 3. Example of rule representation 
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• Simplicity: considered as the number of 

conditions in a rule. In a bit string representation, 

as more zeros are presents in the formula, as 

fewer conditions in the rule.   

• Quality: is inversely the number of 

misclassifications. This means examples covered 

with a different assigned class. 

 

The fitness function is    
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Where Cases- means the number of covered 

examples predicted has false positives (different 

consequent as the rule). Zeros(r) is the number of 

zeroes in the bit string representation of the rule r and 

length is the chromosome length in bits. 

  
3.5. Genetic operators 
 

The species formation is of great importance in a 

GCCL algorithm. For this purpose EDGAR uses the 

selection operator universal suffrage (US) first used in 

[1]. This mechanism creates niches of coverage that do 

not compete between them (co-evolution). 

The recombination and mutation operators are 

based on standard bit string representation and are 

applied on the selected parents based on a probability. 

The recombination operator used is the two-point 

crossover. The mutation operator changes one random 

bit in the chromosome.  

 

3.6. Data training set reduction under 
evolution and covering 
 

US is a powerful and flexible operator for most 

situations, but if training examples representing a 

concept are a in a smaller amount than other concepts, 

US could makes the rule disappear under the attraction 

of the rules with more voters.  

 In order to dedicate more computational effort to 

the more difficult to learn examples the algorithm 

deletes the examples already learned. The process is 

the following: when the algorithm detects that the rule 

set has the same rules in a number of generation, the 

best rule is removed from the population. The criteria 

of selection for the best rule is based on number of 

positive cases and the fitness. The worst rules covering 

fewer examples will receive more computational efforts 

allowing a better coverage. 

This strategy also makes the algorithm less 

dependent on the example-population ratio because it 

guarantees that all the examples will be selected either 

in the standard phase with the initial dataset, or in the 

final phase, with the reduced dataset. 

 

3.7. Greedy algorithm for rule set extraction 
 

 This algorithm is used by the nodes to send their 

partial model to the pool and also to extract the final 

classifier from the central pool.  

The population in any node is a redundant set of 

rules that does not specify how they perform the 

classification. The classifier must be extracted from 

this pool taking into account coverage, classification 

and simplicity. As two of them are already managed by 

the fitness at rule level, a derived expression gives 

order criteria (Π ) to extract the proposed rule set: 
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Once selected the rule, all the positive cases of this 

one are removed and the rest of candidate rules are 

newly reordered. When no examples are uncovered the 

process returns the rule set. This rule set represents the 

current concept description in an ordered set where the 

first applicable rule predicts the result. This set is 

calculated frequently to decide if the model is more 

accurate than the previous one. When the model does 

not longer improve, it returns the last concept 

description extracted. 

 

4. Experimental study 
 

In this section we describe the experimental study 

developed. Subsection 4.1 give details of dataset and 

algorithms used for comparison. Subsection 4.2 shows 

the methodology followed in the experiments, 

subsection 4.3 shows the results, and finally, in 

subsection 4.3 we analyze them. 

 

4.1 Datasets and algorithms 
 

For the experimental study, a well known problem 

has been chosen from UCI [16]: Nursery. This dataset 

has 12.960 instances, big enough to test data 

distribution. Nursery is a complex dataset with 6 

characteristics and 5 not balanced classes, representing 

three of them more than 97% of the dataset. 

The algorithm chosen for comparison is REGAL. 

As was commented before, this algorithm is a 

distributed evolutionary algorithm using US. However 

the parallelization strategies is different than the one 

proposed in this work: REGAL centralizes the search 
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trough the direct assignation of learning examples to 

nodes and EDGAR let the local heuristics and the 

enhanced island model to drive the search.  

   
4.2 Comparison Methodology 
 

We have evaluated both algorithms using 5 

partitions with 50% of training and testing.  

The comparison will measure the quality of the 

classifier and speed up achieved relative to the number 

of processors. The first one is given by the number of 

rules and classification ratio. The speed up is measured 

trough the total execution time having the same 

parameters in each execution.  

The comparison has been carried out with 1600 

individual as sum of all local node population.   This 

population has been proved to be big enough for both 

algorithms to get the maximum accuracy and lower 

number of rules.  

 
Table 1: Execution parameters 

   REGAL EDGAR 

Stopping criteria 500 gen. Not improve 

in 5 gen.  

Mutation% 0,01% 1% 

Recombination% 60% 90% 

Communication ratio 10% 10% max 

Generation Gap 10% 20% 

 

The experiments have been realized having 

configurations from 4 to 64 nodes in order to study the 

impact of the distribution on the referenced variables.  

Table 2 shows value parameters used. The stopping 

criteria for REGAL has been calculated experimentally 

using the same criteria as with the population.  

 

   4.3 Results 
 

Tables 2 and 3 represent average on 150 executions 

(5 for each partition, 6 different seeds and 5 node 

configurations). First column is the number of nodes. 

Second is the execution time in minutes. Finally, third 

and fourth columns show the classification results for 

test and training dataset.   

 

Table 2: Results of REGAL 
Nodes Time Rules %Test %Training 

4 1,78 290 98,6 98,9 

8 1,97 251 99,0 99,3 

16 2,32 250 98,9 99,2 

32 2,81 268 98,5 98,7 

64 3,08 316 97,9 98,0 

Table 3: Results of EDGAR 
Nodes Time Rules %Test %Training 

4 2,89 173 99,4 99,7 

8 1,59 209 98,5 98,8 

16 1,20 206 98,9 99,2 

32 1,11 231 98,3 98,8 

64 1,21 199 98,5 98,6 
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Figure 4. Compared time Nursery execution 
 

4.4 Analysis 
 

Analyzing tables 2 and 3, we can point out: 

• The time of execution (see figure 4) of the 

proposed has a considerable speedup and a better 

behavior than the compared algorithm when the 

number of processors increases. 

• Classification accuracy is similar in both 

algorithms and does not follow any tendency 

relative to the number of processors 

• The number of rules generated is between 60% 

and 80% smaller in EDGAR. 

  

5. Conclusions  
 

This work presents an evolutionary distributed 

genetic algorithm for classification rules extraction 

based on the island model and enhanced for scalability 

with data training partitioning. To be able to generate 

an accurate classifier with data partition two techniques 

has been proposed: an elitist pool for rule selection and 

a novel technique of data distribution (DLF) that uses 

heuristics based on the local data to dynamically 

redistribute the training data in the node 

neighbourhood.  

In this preliminary study EDGAR shows a 

considerable speed up and even more, this 

improvement does not compromised the accuracy and 

quality of the classifier. 

Finally, we would like to remark the absence of a 

master process to guide the search. This architecture 

suggests a better scalability by avoiding idle time due 
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to synchronization issues or network bottleneck 

typically associated to master-slave relation.  
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