
Efficient Distributed Genetic Algorithm for Rule Extraction

Antonio Peregrin

Dept. of Information Technologies
University of Huelva
peregrin@dti.uhu.es

 Miguel Angel Rodriguez

Dept. of Information Technologies
University of Huelva

miguel.rodriguez@dti.uhu.es

Abstract

This paper presents an efficient distributed genetic
algorithm for classification rules extraction in data
mining, which is based on a new method of dynamic
data distribution applied to parallelism using networks
of computers in order to mine large datasets. The
presented algorithm shows many advantages when
compared with other distributed algorithms proposed
in the specific literature. In this way, some results are
presented showing significant learning rate speed-up
without compromising other features.

1. Introduction

Mining huge datasets for learning classification

models with high prediction accuracy can be a very

difficult task. The evaluation of data over large size

datasets makes data mining algorithms inefficacy and

inefficient. The effect produced by the size of the data

in the algorithms is called scaling problem.

There are three main approaches for this problem:

• Use as much as possible apriori knowledge to

search in subspaces small enough to be explored.

• Perform data reduction.

• Algorithm scalability.

In this way, there have been several efforts to make

use of models based on distributed evolutionary

algorithms in data mining for classification in large size

datasets in order to emphasize on aspects of scalability

and efficiency. REGAL [1] and NOW G-net [2]

increase the computational resources via the use of data

distribution. Nowadays, the use of collection of

computers to achieve greater amount of computational

resources become more popular because they are much

more cost-effective than single computers of

comparable speed.

In this paper we present an Efficient Distributed

Genetic Algorithm for classification Rules extraction

(EDGAR) with dynamic data partitioning that shows

advantages in scalability for exploring high complexity

search spaces with comparable classification quality.

The outline of the contribution is as follows: In

Section 2 we review the distributed evolutionary

models in rule induction. Section 3 is devoted to

analyse the proposed algorithm. The experimental

study developed is shown on Section 4 and finally, we

reach conclusions in Section 5.

2. Preliminaries: genetic learning

Genetic Algorithms (GA) are search algorithms

based on natural genetics that provide robust search

capabilities in complex spaces, and thereby offer a

valid approach to problems requiring efficient and

effective search processes [8].

They have achieved reputation of robustness in rule

induction, in commons problems associated to real

world mining (noise, outliers, incomplete data, etc…).

Initially GA were not designed as machine learning

algorithms but can be easily dedicated to this task [10].

Typically the search space is seen as the entire possible

hypothesis rule base that covers the data. The goodness

is usually related to a coverage function over a number

of learning examples.

Regarding the representation of the solutions, the

proposals in the specialized literature follow two

approaches in order to encode rules within a population

of individuals:

• The ‘‘Chromosome = Set of rules’’, also called the

Pittsburgh approach, in which each individual

represents a rule set [18]. In this case, a

chromosome evolves a complete RB and they

compete among them along the evolutionary

process. GABIL [9] and GA-MINER [7] are

proposals that follow this approach.

• The ‘‘Chromosome = Rule’’ approach, in which

each individual codifies a single rule, and the whole

rule set is provided by combining several

individuals in a population (rule cooperation) or via

different evolutionary runs (rule competition).

In turn, within the ‘‘Chromosome = Rule’’

approach, there are three generic proposals:

Eighth International Conference on Hybrid Intelligent Systems

978-0-7695-3326-1/08 $25.00 © 2008 IEEE

DOI 10.1109/HIS.2008.128

531

• The Michigan approach, in which each individual

encodes a single rule. These kinds of systems are

usually called learning classifier systems [17]. They

are rule-based, message-passing systems that

employ reinforcement learning and a GA to learn

rules that guide their performance in a given

environment. The GA is used for detecting new

rules that replace the bad ones via the competition

between the chromosomes in the evolutionary

process.

• The IRL (Iterative Rule Learning) approach, in

which each chromosome represents a rule.

Chromosomes compete in every GA run, choosing

the best rule per run. The global solution is formed

by the best rules obtained when the algorithm is run

multiple times. SIA [4] is a proposal that follows

this approach.

• The GCCL (genetic cooperative-competitive

learning) approach, in which the complete

population or a subset of it encodes the RB. In this

model the chromosomes compete and cooperate

simultaneously. COGIN [19], REGAL [1] and

NOW G-Net [2] are examples with this kind of

representation.

In relation with scalability, one of the approaches to

scale supervised data mining algorithms is to use data

distribution in a number of processors [3]. Then each

processor performs genetic learning using a single

training data subset and a single subpopulation. It

seems that each sub-population is likely to over fit the

corresponding training data subset. Some approaches

have been applied to avoid this problem:

• Dynamically redistribute training data and rules. A

master process controls the data assigned trough the

learning process [1][2] to each client processor.

• The data subsets assigned to each client processors

changes after a pre-specified number of generations

without removing the existing population. The

individuals will try to cover then the newly arrived

training data [6].

The proposal presented in this work follows GCCL

approach with a new dynamic data distribution

technique in order to get scalability without the

previously mentioned over fitting, and a central elite

pool to integrate the partial solutions.

3. EDGAR

This section describes the characteristics of

EDGAR. This algorithm uses the inherent parallelism

of GA for distributing the population and the training

data in order to improve the scalability on large

datasets.

This section details the distributed model and the

components of the genetic algorithm: representation,

genetic operators, genetic search and data reduction.

Last part of this section is devoted to the greedy

algorithm used for determine the best set of rules that

will make up the classifier from the redundant

population of rules generated by a GCCL algorithm.

3.1. Model

Using the intrinsic parallelism of GA, various

distributed GA have been proposed to reduce the

computational effort needed in solving complex

optimization problems. Instead of evolving the entire

population in a single processor, parallel GA applies

the concept of multiple intercommunicating

subpopulations [10] in analogy with the natural

evolution of spatially distributed populations namely

island model.

In order to improve scalability, we have assigned

different partitions of the learning data to each node.

Each node will tend to cover the local data proposing a

concept description. The communication of the best

individuals between subpopulations will enforce those

individuals that perform properly in more than one

node.

Figure 1. Distributed model

To avoid the disruption due to data partitioning we

propose a novel technique called data learning flow

(DLF). DLF it is based in the idea that a training

example not properly covered may be better covered in

another data partition. DLF copies the training

examples covered by low fitness rules to the

neighborhood. DLF allows recreating the original

concept represented by those learning examples in one

of the existing data partitions.

When the data does not have small disjunts [15] and

the classes are nearly balanced each node will produce

Subpopulations
& Data partition

GA 2

Rules &

Examples

GA 1

GA 3

GA 4
Pool

Rules &

Full

Dataset

Rules &

Examples

Concept

Description

Rules &

Examples

Rules &

Examples

532

a valid set of rules. But datasets with small dijunts will

be even more difficult to learn after data partitioning.

Another difference with the island model is the

extraction of the rule set that will form the final

solution. In an island model all the nodes will converge

to a similar population, but with data partitioning each

node will generate a different set of rules reflecting the

assigned data and may not perform properly against the

entire dataset.

This proposal uses an elite pool in a central node

with the full dataset for this purpose (see figure 1). The

nodes send their best rules to the elite pool. When the

classification ratio does not improve in the elite pool

for some generations the current set of rules is

extracted from this pool as the proposed classifier.

As a summary, the distributed model proposed is

based on:

• Multiple intercommunicating subpopulations.

• Distributed data and DLF.

• Central elite pool.

3.2. Local genetic algorithm

EDGAR uses a local GA in each node with some

communications with the neighborhood for individuals

and poorly covered examples.

Figure 2.Local Genetic Algorithm

Each node receives a subset of the training

examples randomly selected from the initial dataset.

Each training example only will exist initially in one

partition. The initial population is created with rules

covering some of the examples of the initial population

(seeding). In each cycle some individual are selected

using the Universal Suffrage (US) operator for

recombination and mutation. Each offspring will

replace a randomly selected individual in the current

population.

After a number of iterations, some operations are

performed (see figure 2):

• The rules that better cover the local data are copied

to other nodes and the elite pool.

• Some individuals from other nodes replace

randomly selected individuals in the current

population.

• DLF: The learning examples not covered or

covered by low fitness rules are copied to other

nodes.

• If the best rules are the same for a number of

iterations, the best individual and their covered

cases are removed.

The process finalizes whether all the training data is

removed or the classification ratio in the central pool

does not improve after a number of generations.

3.3. Representation

EDGAR uses a fixed length bit string representation

to code a disjunctive rule. The use of fix length

chromosomes allows having simpler genetic operators.

In order to keep the maxima that a local change on the

genotype implies a proportionate change on the

phenotype, each different possible value of an attribute

in a rule is represented as a single bit. Meaning a bit set

to 1 the presence of the value in the rule and a bit set to

0 the absence of this value in the rule.

A rule is composed by characteristics C= c1, c2, ... ,
cj, each one can take just one value in each instance of

the data mined but the rule may have more than one

value for this characteristic.

 For example, a rule which covers a dataset with

three antecedents c1 (v1,v2,v3), c2(v4,v5), c3 (v6,v7,v8) and

the consequent class(v9,v10) will be represented as seen

in figure 3.

3.4. Fitness

The fitness function is based on the following

measurements:

Generate initial population using seeding

While (Stop Criteria)

 For a number of generations

 Select g individuals by US

 For each individual

 If % Perform recombination

 If % Perform mutation

 end

 replace g individual from population

 Exchange individuals

 Exchange training examples

 end

 end

 Extract set of rules by greedy algorithm

 Send set of rules to Central Pool

 If (not improving) reduce training data

 end

if c1 in (v1,v3) and c3 in (v1) then class is v2

c1 c2 c3 Class

V1 v2 v3 v4 v5 v6 v7 v8 v9 v10

1 0 1 0 0 1 0 0 0 1

Figure 3. Example of rule representation

533

• Simplicity: considered as the number of

conditions in a rule. In a bit string representation,

as more zeros are presents in the formula, as

fewer conditions in the rule.

• Quality: is inversely the number of

misclassifications. This means examples covered

with a different assigned class.

The fitness function is

−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

Cases

rlenght

rzeros
rf

*1

)(

)(
1)(

Where Cases- means the number of covered

examples predicted has false positives (different

consequent as the rule). Zeros(r) is the number of

zeroes in the bit string representation of the rule r and

length is the chromosome length in bits.

3.5. Genetic operators

The species formation is of great importance in a

GCCL algorithm. For this purpose EDGAR uses the

selection operator universal suffrage (US) first used in

[1]. This mechanism creates niches of coverage that do

not compete between them (co-evolution).

The recombination and mutation operators are

based on standard bit string representation and are

applied on the selected parents based on a probability.

The recombination operator used is the two-point

crossover. The mutation operator changes one random

bit in the chromosome.

3.6. Data training set reduction under
evolution and covering

US is a powerful and flexible operator for most

situations, but if training examples representing a

concept are a in a smaller amount than other concepts,

US could makes the rule disappear under the attraction

of the rules with more voters.

 In order to dedicate more computational effort to

the more difficult to learn examples the algorithm

deletes the examples already learned. The process is

the following: when the algorithm detects that the rule

set has the same rules in a number of generation, the

best rule is removed from the population. The criteria

of selection for the best rule is based on number of

positive cases and the fitness. The worst rules covering

fewer examples will receive more computational efforts

allowing a better coverage.

This strategy also makes the algorithm less

dependent on the example-population ratio because it

guarantees that all the examples will be selected either

in the standard phase with the initial dataset, or in the

final phase, with the reduced dataset.

3.7. Greedy algorithm for rule set extraction

 This algorithm is used by the nodes to send their

partial model to the pool and also to extract the final

classifier from the central pool.

The population in any node is a redundant set of

rules that does not specify how they perform the

classification. The classifier must be extracted from

this pool taking into account coverage, classification

and simplicity. As two of them are already managed by

the fitness at rule level, a derived expression gives

order criteria (Π) to extract the proposed rule set:

+
−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+Π Cases

rlength

rzeros
Cases

*
)(

)(
1:

*1

Once selected the rule, all the positive cases of this

one are removed and the rest of candidate rules are

newly reordered. When no examples are uncovered the

process returns the rule set. This rule set represents the

current concept description in an ordered set where the

first applicable rule predicts the result. This set is

calculated frequently to decide if the model is more

accurate than the previous one. When the model does

not longer improve, it returns the last concept

description extracted.

4. Experimental study

In this section we describe the experimental study

developed. Subsection 4.1 give details of dataset and

algorithms used for comparison. Subsection 4.2 shows

the methodology followed in the experiments,

subsection 4.3 shows the results, and finally, in

subsection 4.3 we analyze them.

4.1 Datasets and algorithms

For the experimental study, a well known problem

has been chosen from UCI [16]: Nursery. This dataset

has 12.960 instances, big enough to test data

distribution. Nursery is a complex dataset with 6

characteristics and 5 not balanced classes, representing

three of them more than 97% of the dataset.

The algorithm chosen for comparison is REGAL.

As was commented before, this algorithm is a

distributed evolutionary algorithm using US. However

the parallelization strategies is different than the one

proposed in this work: REGAL centralizes the search

534

trough the direct assignation of learning examples to

nodes and EDGAR let the local heuristics and the

enhanced island model to drive the search.

4.2 Comparison Methodology

We have evaluated both algorithms using 5

partitions with 50% of training and testing.

The comparison will measure the quality of the

classifier and speed up achieved relative to the number

of processors. The first one is given by the number of

rules and classification ratio. The speed up is measured

trough the total execution time having the same

parameters in each execution.

The comparison has been carried out with 1600

individual as sum of all local node population. This

population has been proved to be big enough for both

algorithms to get the maximum accuracy and lower

number of rules.

Table 1: Execution parameters

 REGAL EDGAR

Stopping criteria 500 gen. Not improve

in 5 gen.

Mutation% 0,01% 1%

Recombination% 60% 90%

Communication ratio 10% 10% max

Generation Gap 10% 20%

The experiments have been realized having

configurations from 4 to 64 nodes in order to study the

impact of the distribution on the referenced variables.

Table 2 shows value parameters used. The stopping

criteria for REGAL has been calculated experimentally

using the same criteria as with the population.

 4.3 Results

Tables 2 and 3 represent average on 150 executions

(5 for each partition, 6 different seeds and 5 node

configurations). First column is the number of nodes.

Second is the execution time in minutes. Finally, third

and fourth columns show the classification results for

test and training dataset.

Table 2: Results of REGAL
Nodes Time Rules %Test %Training

4 1,78 290 98,6 98,9

8 1,97 251 99,0 99,3

16 2,32 250 98,9 99,2

32 2,81 268 98,5 98,7

64 3,08 316 97,9 98,0

Table 3: Results of EDGAR
Nodes Time Rules %Test %Training

4 2,89 173 99,4 99,7

8 1,59 209 98,5 98,8

16 1,20 206 98,9 99,2

32 1,11 231 98,3 98,8

64 1,21 199 98,5 98,6

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4 8 16 32 64
Nodes

M
in

u
te

s

Edgar
Regal

Figure 4. Compared time Nursery execution

4.4 Analysis

Analyzing tables 2 and 3, we can point out:

• The time of execution (see figure 4) of the

proposed has a considerable speedup and a better

behavior than the compared algorithm when the

number of processors increases.

• Classification accuracy is similar in both

algorithms and does not follow any tendency

relative to the number of processors

• The number of rules generated is between 60%

and 80% smaller in EDGAR.

5. Conclusions

This work presents an evolutionary distributed

genetic algorithm for classification rules extraction

based on the island model and enhanced for scalability

with data training partitioning. To be able to generate

an accurate classifier with data partition two techniques

has been proposed: an elitist pool for rule selection and

a novel technique of data distribution (DLF) that uses

heuristics based on the local data to dynamically

redistribute the training data in the node

neighbourhood.

In this preliminary study EDGAR shows a

considerable speed up and even more, this

improvement does not compromised the accuracy and

quality of the classifier.

Finally, we would like to remark the absence of a

master process to guide the search. This architecture

suggests a better scalability by avoiding idle time due

535

to synchronization issues or network bottleneck

typically associated to master-slave relation.

6. Acknowledgements

This work has been supported by the Spanish

Ministry of Education and Science under grant No.

TIN2005-08386-C05-01, and the Andalusian

government under grant No. P05-TIC-00531 and No.

P07-TIC-03179.

7. References

[1] Giordana A, Neri F, “Search-intensive concept

induction”. Evolutionary Computation, 1995, pp. 375–416.

[2] C. Anglano, M. Botta, “NOW G-Net: Learning

Classification Programs on Networks of Workstations”.

IEEE Transactions on Evolutionary Computation, October

2002, pp. 463-480.

[3] Freitas, A.A. and Lavington, S.H., Mining Very Large
Databases with Parallel Processing, Kluwer Academic

publishers, 1998.

[4] Venturini G “SIA: a supervised inductive algorithm with

genetic search for learning attribute based concepts”,

Proceedings of European conference on machine learning,
Vienna, 1993, pp. 280–296.

[5] Erick Cantu-Paz, Efficient and accurate parallel genetic
algorithms, Kluwer Academic publishers, 2000.

[6] Nojima Y, Kuwajima I, Ishibuchi H, “Data set

subdivision for parallel distribution implementation of

genetic fuzzy rule selection”, IEEE international conference
on fuzzy systems (FUZZ-IEEE’07), London, 2007, pp. 2006–

2011.

[7] Flockhart, I.W. and Radcliffe, N.J., “GA-MINER:

parallel data mining with hierarchical genetic algorithms –

final report”, EPCC-AIKMS-GA-MINER Report1.0,

University of Edinburgh, UK, 1995.

[8] J.H. Holland, “Adaptation in Natural and Artificial

Systems”, University of Michigan Press, Ann Arbor, MI,

1975.

[9] De Jong KA, Spears WM, Gordon DF, “Using genetic

algorithms for concept learning”. Machine Learning, 1993

pp. 161–188.

[10] D.E. Goldberg, “Genetic algorithms in search,

optimization and machine learning”, Addison-Wesley, New

York, 1989.

[13] M. J. Quinn, Parallel Computing: theory and practice,

McGraw-Hill, 1994.

[14] C. Schaffer, “When does over fitting decrease prediction

accuracy in induced decision trees and rule sets?”,

Proceedings of the European Working Session on Learning
(EWSL-91),1991, pp. 192–205.

[15] G. M. Weiss, “Learning with rare cases and small

disjunts”, Proc. 12th Int. Conf. Machine Learning (ML-95),
1995, pp. 558-565.

[16] UCI C. J. Merz and P. M. Murphy, UCI repository of
machine learning databases. University of California Irvine,

Department of Information and Computer Science,

http://kdd.ics.uci.edu, 1996.

[17] J.H. Holland and J.S. Reitman, Cognition Systems
Based on Adaptive Algorithms, in Pattern-Directed Inference
Systems, D.A. Waterman and F. Hayes-Roth, Eds., Academic

Press, New York, 1978.

[18] Smith S, A learning system based on genetic
algorithms. PhD Thesis, University of Pittsburgh, Pittsburgh,

1980.

[19] Greene DP, Smith SF, “Competition-based induction of

decision models from examples”, Machine Learning, 1993,
pp. 229–257.

[20] Provost, F. and D. Hennessy, "Distributed Machine

Learning: Scaling up with Coarse-grained Parallelism"

Proceedings of the Second International Conference on
Intelligent Systems for Molecular Biology (ISMB-94),
Stanford, 1994.

536

